Simulation & training
Flight simulation has become an integral part of pilot training, both in military and commercial aviation. In comparison to on-airplane training, simulators offer a more controllable, cost-effective, and safe environment. Depending on the training task, the complexity of the required “flight simulator training device” (FSTD) may vary. For example, teaching checklists can be done in a simple, fixed-based mock-up, whereas teaching manual flying skills, or even “line oriented flight training” (LOFT) requires full flight simulators that are equipped with high-fidelity avionics, out-the-window display, and motion platform. Also, in military aviation, multiple flight simulators are sometimes linked to practice tactical and strategic aspects of operational missions.
Although the current level of simulator technology already allows for useful pilot training, there are areas of (flight) simulation which require research and development efforts to make the simulation better representative of certain, unusual operational conditions that challenge the physiological and cognitive performance of flight crews. Such conditions include spatial disorientation, degraded visual environments (for example Brownout, night vision), upset conditions (unusual attitudes, aerodynamic stall), hypoxia, and accelerated flight (G-induced loss of consciousness, G-LOC). One example is to incorporate reduced oxygen breathing devices in a full flight simulator to have pilots experience the effects of hypoxia on their decision making in a mission scenario. Because of their risk for flight safety, for example as a cause of Controlled Flight Into Terrain (CFIT) accidents, these conditions should be addressed in pilot training.
The usual approach is to train these different aspects in dedicated devices, such as a hypobaric chamber for demonstrating the effects of hypoxia, or a terrain-board to show the limitations of night vision goggles (NVG’s). Although these demonstrations are very educational, they do not teach the pilot how this affects their performance in an operational context.
AEOLUS supports the applied research and innovation on human centered simulation on the following R&D activities: emerging technologies (e.g., special simulator devices such as DESDEMONA; flight modelling; Virtual Reality devices, new human-machine interactions, networked and distributed simulation); training effectiveness (e.g., emphasizing positive transfer of training, avoiding negative side effects such as simulator sickness); human performance (e.g., control behavior, measuring workload and situational awareness), cost-effectiveness and operational relevance.
See also: Mobile F-35 hypoxia simulator